Ethernet

Ethernet (эзернет, от лат. aether — эфир) — пакетная технология компьютерных сетей, преимущественно локальных.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие устаревшие технологии, как Arcnet, FDDI и Token ring.

История

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe) составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks»[1].

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных вычислительных сетей (ЛВС). Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, — которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.

Технология

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель.

Причинами перехода на витую пару были:

отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на коаксиальном кабеле) — множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Формат кадра

Существует несколько форматов Ethernet-кадра.

Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.

В качестве дополнения Ethernet-кадр может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.

Разные типы кадра имеют различный формат и значение MTU.


Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех ниже перечисленных вариантах.

В этом разделе дано краткое описание всех официально существующих разновидностей. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями — например, для увеличения расстояния между точками сети используется волоконно-оптический кабель.

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 — поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.

Ранние модификации Ethernet

10 Мбит/с Ethernet

Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)

Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)

10-гигабитный Ethernet

40-гигабитный и 100-гигабитный Ethernet

Согласно наблюдениям Группы 802.3ba, требования к полосе пропускания для вычислительных задач и приложений ядра сети растут с разными скоростями, что определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet - 40 Gigabit Ethernet (или 40GbE) и 100 Gigabit Ethernet (или 100GbE). В настоящее время серверы, высокопроизводительные вычислительные кластеры, лезвийные системы, SAN и NAS используют технологии 1GbE и 10GbE, при этом в 2007 и 2008 гг. был отмечен значительный рост последней.

По состоянию на начало 2010 года, стандарты всё еще остаются в статусе черновых (англ. draft)

Перспективы

О Terabit Ethernet (так упрощенно называют технологию Ethernet со скоростью передачи 1 Тб/с) стало известно в 2008 году из заявления создателя Ethernet Боба Меткалфа на конференции OFC[2] который предположил, что технология будет разработана к 2015 году, правда, не выразив при этом какой-либо уверенности, ведь для этого придется решить немало проблем. Однако, по его мнению, ключевой технологией, которая может обслужить дальнейший рост трафика, станет одна из разработанных в предыдущем десятилетии – DWDM.

«Чтобы реализовать Ethernet 1 Тб/с, необходимо преодолеть множество ограничений, включая 1550-нанометровые лазеры и модуляцию с частотой 15 ГГц. Для будущей сети нужны новые схемы модуляции, а также новое оптоволокно, новые лазеры, в общем, все новое, –сказал Меткалф. – Неясно также, какая сетевая архитектура потребуется для ее поддержки. Возможно, оптические сети будущего должны будут использовать волокно с вакуумной сердцевиной или углеродные волокна вместо кремниевых. Операторы должны будут внедрять больше полностью оптических устройств и оптику в свободном пространстве (безволоконную). Боб Меткалаф»[3].

  1. R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed Packet Switching for Local Computer Networks. // ACM Communications, 19(5):395—404, July 1976.(англ.)
  2. (англ. Optical Fiber Communication Conference and Exposition; Конференции и выставки, посвященные оптоволоконным коммуникациям). Сайт конференции
  3. «На пути к Terabit Ethernet», Леонид Бараш, журнал Компьютерное обозрение

Материал из Википедии — свободной энциклопедии